QZS-3 (MICHIBIKI No. 3) – H-2A (F35) – Танегасима – 19.08.2017 05:29 UTC

Автор che wi, 15.06.2017 09:26:19

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

tnt22


tnt22


tnt22


tnt22

http://spaceflight101.com/h-iia-qzs-3/h-iia-launches-third-qzss-satellite/
ЦитироватьH-IIA Rocket Deploys Japan's Third Quasi-Zenith Navigation Augmentation Satellite
August 19, 2017

Japan's H-IIA rocket soared to its fourth success of the year on Saturday, deploying the third satellite in the country's Quasi-Zenith Satellite System for navigation services augmentation in a fast-paced effort to complete the four-satellite constellation before the end of the year for full service capability by mid-2018. Operated fr om Geostationary and highly specialized Tundra orbits, the system delivers a twofold service to improve the availability of navigation services by placing satellites at high-elevation over the Japanese islands and to enhance navigation accuracy by delivering augmentation messages to equipped GPS and Galileo receivers.
Спойлер

Photo: @naritamasahiro / Twittter

Blasting off with the heaviest member of the constellation, H-IIA flew in its most-powerful 204 configuration on Saturday, featuring four Solid Rocket Boosters to deliver the initial kick needed to send the craft on its way. QZS-3, also known as Michibiki-3, is the sole Geostationary Satellite of the constellation – tasked with providing a constant navigation beacon in the sky over the broader Asia-Pacific Region, delivering navigation augmentation messages for accuracy enhancement in aviation, scientific application and future self-driving automobiles.

H-IIA blasted off from its sea-side launch pad at the picturesque Tanegashima Island on the southern tip of Japan at 5:29 UTC on Saturday, 2:29 p.m. local time – leaping off the ground with a thrust exceeding 1,000 metric-ton-force. Screaming away from the Japanese Islands, H-IIA was headed south east, dropping its boosters just after two minutes into the flight and continuing to fire its cryogenic core stage for six and a half minutes before handing over to the single-engine second stage for an initial boost into Low Earth Orbit. The second stage re-started after a passive coast phase to significantly boost the high point of the orbit and loaded springs pushed QZS-3 on its way 28 minutes and 40 seconds after liftoff, arriving in a standard Geostationary Transfer Orbit.

Image: Mitsubishi Electric

2017 is a very busy year for the Quasi-Zenith Satellite System (QZSS) with all three operational satellites launching within one calendar year to join the initial pathfinder craft that launched back in 2010 to establish the fully operational satellite constellation comprising one satellite in GEO and three satellites at the proper spacing in inclined Tundra orbits to have one craft at high elevation over Japan at any given time.

The Quasi-Zenith Satellite System takes a unique spot in the world's satellite systems in that it augments a foreign constellation in twofold fashion – a) it acts as a member of the Global Positioning System and transmits GPS-compliant navigation signals to increase its availability by placing a GPS mimic at high elevation over Japan, and b) it relays augmentation signals generated on the ground to specially-equipped receivers to improve GPS and Galileo navigation accuracy through the correction of clock drifts and atmospheric signal distortion.

>> Quasi-Zenith Satellite System Overview & Satellite Description


Illustration of GPS Availability Enhancement in Japan's Urban Canyons – Image: JAXA

Traditional navigation augmentation systems like the U.S. Wide Area Augmentation System widely used in aviation only deliver augmentation signals but the case for Japan was special in that not only an accuracy improvement was needed due to the fact that the country's urban canyons were often blocking a direct line of sight from a ground receiver to a sufficient number of GPS satellites to allow for position calculation. To increase GPS availability between tall buildings, an additional GPS source at very high elevation was needed – raising the odds for sufficient satellites being available to obtain a position fix.

This is realized by placing three GPS-transmitting QZSS satellites into specialized Tundra orbits that allows one satellite to be at very high elevation at any time, being treated by ground receivers like any other member of the GPS constellation. The accuracy enhancement is realized independently through specialized GPS/Galileo messages delivering correction information.

The QZSS program started out back in 2002 when development work was started by an industry consortium which later fell apart with JAXA taking over work on the project. Clearance for use of the GPS navigation bands & signal architecture was given by U.S. authorities, allowing the project to move to the launch pad in 2010 with a pathfinder satellite.


QZS-3 before shipment to Tanegashima – Photo: QZSS Project

QZS-1 went through extensive signal characterization and fine-tuning before beginning to deliver services in 2011 to validate the working principle of QZSS – demonstrating service availability enhancement and increasing navigation accuracy by a factor of 2.5. With the concept proven, JAXA ordered three satellites from Mitsubishi Electric for a total of $526 million to establish the operational constellation.

Based on the flight-proven DS-2000 satellite platform, QZS-3 stands 5.4 meters tall and weighs 4,700 Kilograms, including 475kg for the navigation payload and 3,000kg of maneuvering propellant. At the heart of the navigation package sits a pair of redundant Rubidium Atomic Clocks that provide the ultra-stable timing needed for the generation of the navigation signal that is transmitted via an L-Band antenna.

QZSS delivers navigation signals in the L1, L2 and L5 bands which are processed by ground-based receivers like a typical GPS signal. Augmentation messages are not generated onboard the satellite but on the ground through monitoring of GPS and Galileo signal variability by an array of ground stations across Japan and surrounding regions which detect clock errors and other factors like signal delay caused by changes in Earth's ionosphere.


QZSS Constellation with QZS-3 in Geostationary & QZS-1, 2, 4 in Oscillating Synchronous Orbits – Image: QZSS Project

Correction data for these varying factors is uplinked to the QZS satellite which immediately re-transmits it to any enabled receiver in its footprint that can then apply the corrections to its navigation solution to yield a more accurate location, on average with one-meter accuracy. QZS-3 in GEO provides a constant, large footprint over the Asia-Pacific Region, realizing a broad augmentation service, primarily used for aviation.

QZSS delivers the L1-SAIF (Sub-meter class Augmentation with Integrity Function) that is compatible with the U.S. Wide Area Augmentation System, plus an L1-SAIF+ signal that allows receivers to acquire GPS position lock faster and provides space for messages for disaster relief. Additionally, an experimental signal designated L-EX is compatible with the European Galileo satellite constellation coming on line by the end of the decade.


QZSS Project Schedule – Image: QZSS Project


Photo: Mitsubishi Heavy

Called upon for the launch of the heaviest QZSS member was the H-IIA 204, enlisting the help of two additional boosters to be able to lift the satellite into a highly elliptical orbit. Saturday's launch was the 35th H-IIA launch since its debut in 2001, the fourth in the 204 configuration and the fourth H-IIA launch of the year – matching the rocket's previous record for most launches in a calendar year set in 2006 and 2014.

QZS-3 had the luxury of a lengthy launch window of nearly eight hours that it ended up not needing as liftoff occurred at the very opening of the window following a clean countdown that started at midnight local time with the rollout of the 53-meter tall H-IIA rocket. Arriving at the pad, H-IIA was hooked up to ground facilities and engineers vacated the danger zone for propellant loading at X-7 hours to fill the two-stage stack with some 120 metric tons of cryogenic propellants, bringing H-IIA's launch mass to 443 metric tons with the majority of propellants packed into the four Solid Rocket Boosters.

>> H-IIA 204 Launch Vehicle Overview


Photo: JAXA

Liquid Oxygen and Liquid Hydrogen were kept topped up at flight level while H-IIA underwent complex testing to clear the way for a fast-paced computer-controlled countdown sequence kicking off at X-4.5 minutes to pressurize the rocket's tanks, switch the launcher to battery power and transition it to flight mode with its own computers in full control. Flames erupted from the base of the rocket at X-5.2 seconds when the LE-7A engine began its carefully controlled ignition sequence, soaring to a thrust of 86,000-Kilogram force and reaching stable operating conditions before the point of no return – ignition of the four boosters.

With a thrust just exceeding 1,000 metric-ton force, H-IIA leapt off its ocean-side launch pad – the boosters doing most of the work, delivering 90% of the rocket's total thrust. H-IIA climbed vertically for only a few seconds before entering its pitch and roll maneuver to get aligned with a departure path to the south east, headed across the Pacific Ocean on the usual route to Geostationary Transfer Orbit.


Photo: @shinnosuke0113 / Twitter

Burning some 2,550 Kilograms of propellants per second, H-IIA pushed through the sound barrier less than a minute after launch and passed Maximum Dynamic Pressure as it made its way through the dense atmosphere, entering a slight thrust reduction on the boosters to maintain structural limits. Each of the SRB-A4 boosters clustered around the core stage delivered a vacuum thrust of 2,263 Kilonewtons, consuming 66 metric tons of propellant over a burn of 106 seconds to help boost H-IIA's speed to 2.2 Kilometers per second.

Burnout of the boosters was sensed by their declining chamber pressure and H-IIA held onto them for another 20 seconds to ensure safe thrust tail-off and an off-shore impact. The 15-meter long boosters fell away in pairs at X+2:06 and X+2:09 when H-IIA had reached an altitude of 85 Kilometers – continuing toward space powered by the core stage alone.

37 meters long and 4 meters in diameter, H-IIA's first stage launched with 103 metric tons of cryogenics on board, consumed by the single LE-7A engine to deliver 109 metric ton-force of thrust when flying through the tenuous upper atmosphere.

Three minutes and 45 seconds into the flight, H-IIA had reached an altitude of 173 Kilometers and jettisoned its payload fairing to reveal the Michibiki-3 satellite and shed no-longer-needed weight. This flight used the larger 5S type fairing with a five-meter diameter to house the rather large satellite, marking that's fairing's come back after over a decade.


Mission Ground Track – Image: JAXA/Spaceflight101

The first stage finished its role in the flight six minutes and 38 seconds after launch, shutting down its main engine and dropping away eight seconds later after accelerating the rocket to a speed of 5.9 Kilometers per second, lifting it to 270 Kilometers in altitude. Stage 2 promptly ignited its engine six minutes and 52 seconds after launch on a planned four-minute and 31-second burn to inject the stack into a Low Earth Parking Orbit.

Generating 13,970 Kilogram-force of thrust, the second stage successfully reached its intended Parking Orbit eleven and a half minutes after liftoff and entered a 12-minute coast phase toward the equator. The LE-5B main engine fired up again 23 minutes and 35 seconds into the mission for a burn of four minutes and nine seconds to significantly lift the apogee of the orbit, targeting a standard Geostationary Transfer Orbit of 380 by 35,976 Kilometers at an inclination of 20 degrees.

Stage 2 performed admirably and achieved the planned orbit for separation of the QZS-3 satellite 28 minutes and 39 seconds after liftoff, embarking on a multi-burn orbit raising campaign to take up residence in Geostationary Orbit wh ere it can remain locked over the Asia-Pacific Region.

The four-satellite QZSS constellation is expected to be complete by the end of the year with QZS-4 currently looking at a launch target around October, set to join QZS-1 and 2 in Tundra orbit for a final testing campaign before fully operational QZSS services are rolled out around April 2018.
[свернуть]

tnt22

Начинается послепусковая пресс-конференция
 




tnt22

Пресс-релиз по итогам запуска (пока только на японском)

http://www.jaxa.jp/press/2017/08/20170819_h2af35_j.html
Цитировать
H-IIAロケット35号機による
「みちびき3号機」(準天頂衛星システム 静止軌道衛星)の
打上げ結果について

平成29年8月19日

三菱重工業株式会社
国立研究開発法人宇宙航空研究開発機構

 三菱重工業株式会社及び国立研究開発法人宇宙航空研究開発機構(JAXA)は、種子島宇宙センターから平成29年8月19日14時29分00秒(日本標準時)に、「みちびき3号機」(準天頂衛星システム 静止軌道衛星)を搭載したH-IIAロケット35号機(H-IIA・F35)を打ち上げました。
  ロケットは計画通り飛行し、打上げ後約28分37秒に「みちびき3号機」(準天頂衛星システム 静止軌道衛星)を正常に分離した事を確認しました。
  今回のH-IIAロケット35号機打上げ実施にご協力頂きました関係各方面に深甚の謝意を表します。

本情報につきましては、次のURLでもご覧頂けます。
В двух словах
ЦитироватьThe rocket flew as planned and confirmed that "Michibiki Unit 3" (Quasi-Zenith Satellite System geosynchronous orbiting satellite) was normally separated at about 28 minutes 37 seconds after launch.
ЦитироватьРакета пролетела так, как планировалось, подтверждено, что «Мичибики блок 3» (геосинхронный спутник спутниковой спутниковой системы Quasi-Zenith) отделился примерно через 28 минут через 37 секунд после запуска.

tnt22

Выпущен документ H-IIA ロケット 35号機 打上げシーケンス(速報) - Последовательность запуска РН H-IIA № 35 (предварительный отчет), 1 стр, 63752 B

tnt22

#230
Пресс-конференция руководства JAXA и Mitsubishi Heavy Industries, Ltd завершена
 


tnt22

Подоспел английский вариант пресс-релиза

http://global.jaxa.jp/press/2017/08/20170819_h2af35.html
Цитировать
Successful Launch, H-IIA Launch Vehicle No. 35 Encapsulating MICHIBIKI No. 3

August 19, 2017 (JST)

Mitsubishi Heavy Industries, Ltd.
National Research and Development Agency
Japan Aerospace Exploration Agency (JAXA)

Mitsubishi Heavy Industries, Ltd. and JAXA successfully launched H-IIA Launch Vehicle No. 35 (H-IIA F35) which encapsulates MICHIBIKI No. 3, (Quasi-Zenith Satellite System; geostationary orbit) at 2:29:00 p.m. on August 19, 2017 (JST) from JAXA's Tanegashima Space Center.

 The launch and flight of H-IIA Launch Vehicle No. 35 proceeded as planned and the separation of the satellite was confirmed at approximately 28 minutes and 37 seconds after liftoff.

 We express sincere appreciation for all.

tnt22

https://spaceflightnow.com/2017/08/19/japan-launches-navigation-satellite-after-week-long-delay/
ЦитироватьJapan launches navigation satellite after week-long delay
August 19, 2017 Stephen Clark


Japan's H-2A rocket lifts off Saturday fr om the Tanegashima Space Center. Credit: MHI

A Japanese H-2A rocket soared away from a launch pad on a rocky overlook on the Pacific Ocean on Saturday, hauling into orbit the country's third Michibiki satellite to join a constellation of navigation aids to improve positioning services across the country.
Спойлер
The third satellite to join Japan's Quasi-Zenith Satellite System took off at 0529 GMT (1:29 a.m. EDT; 2:29 p.m. Japan Standard Time) Saturday, eight days later than originally scheduled.

Weather pushed back the mission's initial Aug. 11 launch date, and a leaky helium pressurization system scrubbed a launch attempt Aug. 12, forcing ground crews to roll the rocket back to its hangar for repairs.

The 174-foot-tall (53-meter) H-2A launcher, powered by a hydrogen-fueled main engine and four strap-on solid rocket boosters, headed east from the Tanegashima Space Center, a spaceport built on an island at the southwestern edge of the country.

Climbing through a clear afternoon sky on 2.5 million pounds of thrust, the H-2A rocket quickly exceeded the speed of sound and left a twirling column of exhaust in its wake.

The four solid rocket boosters let go from the launcher around two minutes after liftoff, and the shroud covering the Michibiki 3 spacecraft jettisoned a couple of minutes later.

The H-2A's cryogenic upper stage engine performed back-to-back burns to guide the Michibiki 3 satellite into an oval-shaped geostationary transfer orbit that will take the payload more than 22,000 miles (nearly 36,000 kilometers) above Earth at its highest point.

The Japanese launch team reported no issues during the flight, and they announced an on-target separation of the Michibiki 3 satellite around 29 minutes into the mission, prompting applause from engineers in the H-2A control center.


Artist's illustration of a driver using navigation signals from a Quasi-Zenith Satellite in an area wh ere GPS satellite signals are partially blocked. Credit: National Space Policy Secretariat

The satellite was expected to radio its status to a ground station soon after launch, and Michibiki 3's on-board engine will conduct multiple firings over the next few days to circularize its orbit at geostationary altitude — around 22,300 miles (35,800 kilometers) over the equator.

Built by Mitsubishi Electric, the navigation craft joins two similar satellites launched on H-2A rockets in September 2010 and in June of this year. Those previous spacecraft circle Earth in orbits tilted at an angle to the equator, causing them to oscillate north and south, but remain always fixed over the Asia-Pacific region.

A fourth Japanese navigation satellite will launch later this year on another H-2A flight.

Michibiki means "guiding" or "showing the way" in Japanese.

The network will help ensure drivers, hikers and other users can constantly locate themselves. Skyscrapers in cities, such as Tokyo, and mountainous terrain can block signals from GPS satellites, which are located in orbits closer to Earth than the Michibiki satellites.

The GPS constellation, operated by the U.S. Air Force, flies 12,550 miles (20,200 kilometers) above Earth. Although there are at least 30 operational GPS spacecraft, only a small fraction of the fleet is visible from a single point on Earth at one time.

It takes four GPS satellites to calculate a precise position on Earth, but a Michibiki satellite broadcasting the same four L-band signals will give a receiver an estimate if there are not enough GPS satellites visible, or it can help produce a more accurate position calculation even with full GPS service.

"The Quasi-Zenith Satellite System is the first in the world to transmit sub-meter and centimeter level augmentation signals," said Hiromichi Moriyama, executive director of the National Space Policy Secretariat in Japan's Cabinet Office. "It will be in charge of communications linking evacuation shelters and emergency response headquarters in times of disaster."

Officials say urban planning, agriculture, disaster response and national security will be supported by the four-satellite navigation fleet.

Japan is not the country developing a regional navigation fleet to improve GPS signals over its territory.

India has launched seven navigation satellites — with an eighth due for liftoff later this month — to work in concert with the GPS satellites across the subcontinent.

Meanwhile, European nations and China are developing and deploying separate navigation networks to provide global services independent of the GPS constellation. Russia already has its own satellite navigation system with near-global coverage.
[свернуть]

tnt22

http://tass.ru/kosmos/4492344
ЦитироватьВ Японии запустили третий спутник из серии "Митибики" для создания аналога GPS

Космос 19 августа, 8:45 дата обновления: 19 августа, 9:14 UTC+3

ТОКИО, 19 августа. /ТАСС/. Японское агентство аэрокосмических исследований (JAXA) провело в субботу запуск третьего по счету спутника связи "Митибики" с помощью тяжелой ракеты-носителя H-IIA. Трансляция старта с космодрома Танэгасима в юго-западной префектуре Кагосима велась в прямом эфире.
Спойлер
Запуск ракеты изначально планировалось осуществить 11 августа, однако его дважды пришлось откладывать - сначала из-за погодных условий, а затем по техническим причинам.

Отмечается, что запуск прошел успешно. Аппарат отделился от тяжелой ракеты-носитель H-IIA на высоте около 420 км над поверхностью Земли и продолжил движение по заданной траектории.

Первый такой аппарат был выведен на орбиту в сентябре 2010 года, а второй - в июне текущего. По плану правительства Японии, к 2018 году группировка увеличится до четырех спутников и они будут использоваться для дополнения американской системы глобального позиционирования GPS, поскольку иногда пользователи испытывают затруднения при плохом сигнале в труднодоступных местах. Предполагается, что к 2023 году на орбите будут находиться уже семь аппаратов "Митибики", работающих независимо от GPS.

Особенность японской системы позиционирования, получившей название QZSS, заключается в высокой степени шифрования сигналов. Это дает возможность, как утверждается, надежно защитить их от помех, которые могут создавать враждебные государства или террористические организации. Помимо гражданских пользователей, на "Митибики" предполагается полностью переключить вооруженные силы и спецслужбы Японии.

Большое внимание к будущей японской системе позиционирования проявляют и представители бизнеса. В первую очередь они собираются использовать ее для улучшения работы систем автомобильной навигации, для чего критически важна точность определения местоположения. У QZSS погрешность в будущем будет составлять около шести см. Кроме того, эта система позволит использовать ее возможности при разработке беспилотных автомобилей.

Как считают японские эксперты, развитие этого японского аналога GPS в будущем может открыть рынок, общие объемы которого будут достигать 2 трлн иен (около $18,2 млрд).
[свернуть]

triage

как говорится какая разница между
 https://spaceflightnow.com/2017/08/19/japan-launches-navigation-satellite-after-week-long-delay/ 
и
 http://tass.ru/kosmos/4492344 
Спойлер
Особенность японской системы позиционирования, получившей название QZSS, заключается в высокой степени шифрования сигналов. Это дает возможность, как утверждается, надежно защитить их от помех, которые могут создавать враждебные государства или террористические организации.
[свернуть]

tnt22

НОРАД располагает наборами TLE на 2 объекта запуска (по два набора на объект)
 
IDs - 42917 / 2017-048A, 42918 / 2017-048A (?) (должно быть B)

tnt22

Цитировать Jonathan McDowell‏Подлинная учетная запись @planet4589 51 мин. назад

Michibiki 3 cataloged in 344 x 35932 km x 19.9 deg geotransfer orbit. H-2A second stage in 368 x 35878 km x 19.9 deg.

Старый

Почему аппарат такой тяжёлый что потребовалась РН с четырьмя ускорителями?
1. Ангара - единственная в мире новая РН которая хуже старой (с) Старый Ламер
2. Назначение Роскосмоса - не летать в космос а выкачивать из бюджета деньги
3. У Маска ракета длиннее и толще чем у Роскосмоса
4. Чем мрачнее реальность тем ярче бред (с) Старый Ламер

tnt22

ЦитироватьСтарый пишет:
Почему аппарат такой тяжёлый что потребовалась РН с четырьмя ускорителями?
В созвездии QZSS два типа спутников:
- КА с орбитой типа "Тундра" - QZS-1, QZS-2 и QZS-4 - масса около 4000 кг;
- геостационарный КА (единственный в созвездии) - QZS-3 - масса около 4700 кг, дополнительное оборудование связи (ПРД, антенны), топливо для коррекции орбиты
ЦитироватьQZS-3 stands 5.4 meters tall and weighs 4,700 Kilograms, including 475kg for the navigation payload and 3,000kg of maneuvering propellant.
(см здесь или #224). За счет доп. нагрузки QZS-3 не только тяжелее, но и габаритнее остальных КА созвездия - при его выводе использовался ГО диаметром 5.1 м против 4.1 м для "тундровых" КА.