TRICOM-1R – SS-520-5 – Uchinoura – 03.02.2018, 05:00 UTC

Автор tnt22, 13.11.2017 21:03:56

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

tnt22

https://spaceflightnow.com/2018/02/02/ss-520-5-tricom-1r-test-launch/
ЦитироватьSouped-up sounding rocket lifts off from Japan with tiny satellite
February 2, 2018 Stephen Clark

EDITOR'S NOTE: Updated at 9 a.m. EST (1400 GMT) on Feb. 3 after confirmation of successful flight.

https://www.youtube.com/watch?time_continue=761&v=TbUhlxYD02Y
(video 17:38 )
Video credit: JAXA

A modified sounding rocket originally designed to loft science instruments on high-altitude suborbital arcs blasted off Saturday from the Uchinoura Space Center in southern Japan and soared into orbit to become the world's smallest satellite launcher.

The SS-520-5 rocket lifted off at 0503 GMT (12:03 a.m. EST; 2:03 p.m. Japan Standard Time), the opening of a 10-minute window. It released a small satellite into orbit seven-and-a-half minutes later, according to the Japan Aerospace Exploration Agency, which declared the launch a success.

A live webcast of the launch provided by JAXA experienced technical difficulties, but it briefly showed the SS-520-5 launcher soaring into a clear afternoon sky.
Спойлер
Standing just 31 feet (9.5 meters) tall and spanning around 20 inches (52 centimeters) in diameter, the SS-520-5 rocket was modest by launcher standards. With Saturday's successful flight, the solid-fueled booster became the smallest rocket to ever put an object in orbit around Earth.

A student-built shoebox-sized CubeSat named TRICOM 1R — weighing in at about 10 pounds (3 kilograms) — was mounted on top of the SS-520-5 rocket for liftoff from the Uchinoura Space Center in Japan's Kagoshima prefecture.

The SS-520-5 rocket headed east from Uchinoura over the Pacific Ocean with the TRICOM 1R payload.


The SS-520-5 rocket lifts off Saturday from the Uchinoura Space Center with the TRICOM 1R satellite. Credit: JAXA

Billed as an experimental test flight, Saturday's launch came a year after Japan first tried to turn the SS-520 sounding rocket into a launcher capable of placing a small satellite into orbit.

The so-called SS-520-4 rocket failed to reach orbit Jan. 14, 2017, when ground teams lost contact with the vehicle around 20 seconds after liftoff, when the booster's first stage was still firing. Investigators traced the problem to a power supply failure in the rocket's telemetry and command system, which was likely caused by a damaged wire that caused a short circuit.

Japanese officials decided to attempt the test flight again in the wake of last year's mishap. Saturday's launch profile was expected to closely match the flight plan attempted last year, heading to the same target orbit with a copy of the TRICOM 1 CubeSat lost on the SS-520-4 launch.

The SS-520-5 booster is based on Japan's SS-520 sounding rocket, a two-stage vehicle developed by IHI Aerospace and JAXA's Institute of Space and Astronautical Science, which has flown twice on suborbital research missions from Uchinoura and Svalbard, Norway, in 1998 and 2000.

The SS-520 is designed to propel more than 300 pounds (140 kilograms) of science research instrumentation to an altitude of nearly 500 miles (800 kilometers) for a few minutes of exposure to space before falling back to Earth.

Engineers added a third stage on top of the basic SS-520 booster to give it the capability to reach orbital speeds of more than 17,000 mph (27,000 kilometers per hour).


The SS-520-5 rocket soars into the sky Saturday from the Uchinoura Space Center in southern Japan. Credit: JAXA

According to JAXA documents, the SS-520-5 weighed nearly 2.9 tons (2.6 metric tons) at launch, with nearly 2.2 tons (2 metric tons) of that weight made up of pre-packed solid propellants. The SS-520-5's first stage, fitted with spin-stabilizing fins, was loaded with nearly 3,500 pounds (1,587 kilograms) of HTPB solid fuel.

A gaseous nitrogen thruster package was designed to keep the SS-520-5 rocket pointed correctly during a one-and-a-half minute coast phase between the launcher's first and second stage burns.

The second and third stages consumed 716 pounds (325 kilograms) and 172 pounds (78 kilograms) of propellant, respectively.

The rocket targeted an orbit ranging between 111 miles (180 kilometers) and 932 miles (1,500 kilometers) in altitude, with an inclination of 31 degrees.

U.S. military tracking data published online indicated two objects from the the SS-520-5 launch — presumably the rocket's third stage and the TRICOM 1R spacecraft — reached an orbit between 118 miles (191 kilometers) and approximately 1,249 miles (2,010 kilometers), tilted at a 30.9-degree angle to the equator.

Here's an overview of the SS-520-5 rocket's flight sequence:
    [/li]
  • T+plus 31.7 seconds — First stage burnout at an altitude of 85,000 feet (26 kilometers)
  • T+plus 1 minute, 7.0 seconds — Nose cone separation at an altitude of 265,000 feet (81 kilometers)
  • T+plus 1 minute, 8.0 seconds — First stage separation
  • T+plus 1 minute, 10.5 seconds — Nitrogen attitude control system activation
  • T+plus 1 minute, 57.6 seconds — Nitrogen attitude control ends
  • T+plus 2 minutes, 27.0 seconds — Attitude control package jettisoned
  • T+plus 2 minutes, 37.0 seconds — Flight assessment before second stage ignition
  • T+plus 2 minutes, 44.0 seconds — Second stage ignition command sent
  • T+plus 3 minutes — Second stage ignition at an altitude of 111 miles (179 kilometers)
  • T+plus 3 minutes, 24.4 seconds — Second stage burnout at a speed of 8,050 mph (3.6 kilometers per second)
  • T+plus 3 minutes, 55.0 seconds — Second stage separation
  • T+plus 3 minutes, 58.0 seconds — Third stage ignition
  • T+plus 4 minutes, 23.6 seconds — Third stage burnout
  • T+plus 7 minutes, 30.0 seconds — TRICOM 1R separation
Developed by the University of Tokyo, the TRICOM 1R CubeSat carries a store and forward communications radio and an Earth-imaging camera.

The project to test the SS-520 sounding rocket's suitability as a satellite launcher was led by the Japanese Ministry of Economy, Trade and Industry. While there are no existing plans to commercialize the uprated SS-520 as a satellite launcher, Japanese government officials said the project aims to validate low-cost technology and launch operations procedures for a future "nano-launcher" to deploy tiny satellites in orbit on dedicated rides.

Several companies have similar small satellite launchers in development, and one has successfully placed payloads into orbit.

Rocket Lab's Electron rocket, capable of placing up to 330 miles (150 kilograms) into a circular sun-synchronous polar orbit, successfully flew for the first time in January. The orbital demonstration flight came eight months after the first Electron rocket fell short of orbit due to a ground tracking system error.
[свернуть]

tnt22

http://spaceflight101.com/japan-ss-520-5-launch-success/
ЦитироватьJapan's SS-520 CubeSat Launch Vehicle Achieves Success on Second Try
February 3, 2018


Photo: @naritamasahiro / Twitter

A beefed-up sounding rocket-turned-orbital-launch-vehicle zoomed into the skies over Japan's Kyushu Island on Saturday in a bid to become the smallest launch vehicle to successfully achieve orbit one year after its inaugural test flight crashed into the Pacific Ocean.

The SS-520-5 vehicle shot up from its rail launcher at 5:03 UTC and JAXA confirmed the rocket successfully achieved orbit less than four and a half minutes after liftoff – one of the fastest space shots ever carried out.

Saturday's launch placed a tiny, three-Kilogram satellite into orbit and demonstrated the feasibility of launching CubeSats one at a time using a dedicated Nano Satellite Launch Vehicle – an as of yet largely unexplored area of the market.

Confirmation that SS-520-5 successfully reached orbit was provided by the Japan Aerospace Exploration Agency three hours after the day's liftoff when the satellite had been received by ground stations, indicating it was in good health after its swift climb into orbit atop the solid-fueled rocket. Orbital tracking by the U.S. Joint Space Operations Center showed SS-520-5  exceeded expectations, injecting the TRICOM-1R satellite into a slightly higher orbit than planned.
Спойлер

Photo: @koumeiShibata / Twitter

The advances made in technology over the last decade permitted formerly-large spaceborne sensors to be packaged into a minimal volume, allowing small satellites to carry out operational missions in Earth-imaging & other remote sensing, meteorology, maritime & aeronautical tracking and communications.

CubeSats – originally developed for educational missions at the turn of the century – have now turned into potential revenue generators on the commercial market for satellite imagery and tracking services. Their role in scientific missions has also grown, in part due to their low development cost, the possibility of using standardized platforms for many missions and moderate launch prices for CubeSats of up to 6U in size.

Deploying large constellations of CubeSats can provide high revisit times when collecting Earth observation imagery, global weather data through atmospheric sensing or a worldwide, 24/7 ship/aircraft tracking capability. Naturally, large constellations will require a steady replacement of satellites as old ones retire – creating an opportunity for small satellite launch providers.

Last month's successful 'Still Testing' mission of Rocket Lab's Electron was the first wave in a flood within the small satellite launch market as several more rockets are expected to make their debut flights this year including VirginOrbit's LauncherOne. Even though these vehicles have been optimized as a launch solution for the small satellite market, they are still not ideal for single CubeSat missions that still would have to accept the schedule and orbit constraints of ride share flights.

A vehicle capable of placing a single CubeSat weighing up to five Kilograms into orbit may have a market if a launch price of $500,000 or less can be realized. Although this is around double the current asking price for the launch of a 3U CubeSat, the additional benefits for operators to set their own schedule and define their optimized target orbit may outweigh the cost.


Photo: JAXA

When dealing with shared rides, delays are a common occurrence which can be problematic for operators since they need their satellites in orbit to generate revenue, adding another factor in opting for a dedicated launch rather than a possibly cheaper, but more uncertain secondary payload slot.

The "Orbital SS-520" project was initiated by the Japan Aerospace Exploration Agency with the major goal of gathering practical data that could benefit the development of a commercial Nano Satellite Launch Vehicle which a number of companies had expressed interest in.

The SS-520-4 mission reached the launch pad in early 2017 through $3.5 million in funding provided by the Japanese Ministry of Economy, Trade and Industry, covering the procurement of the SS-520 two-stage sounding rocket and the development of modifications needed to allow it to lift a satellite into orbit, primarily the development of a third stage that would be tasked with the orbit injection maneuver.

The SS-520-4 rocket, topped by the TRICOM-1 CubeSat, raced into the morning skies over the Uchinoura Space Center on January 15, 2017 but was unable to reach orbit after a short circuit knocked out the rocket's entire electrical system only 20.4 seconds into the 31.7-second first stage burn, causing all telemetry to be lost on the ground. A built-in safety checkpoint prior to ignition of the second stage could therefore not be passed and the rocket fell into the Pacific Ocean just downrange from the launch site.

Within a month of the mishap, engineering teams discovered SS-520-4 was brought down by a fairly basic design flaw that caused insulation of a wire bundle being abraded in the extreme vibration of launch, resulting in an electrical line coming into contact with the grounded launch vehicle structure. The identified fix was straightforward and convinced JAXA to give the project another chance with the goal of getting the Orbital SS-520 back into a launch posture within one year of its first flight.

The Orbital SS-520 is a three-stage, all-solid-fueled launch vehicle standing 9.54 meters tall and 52 centimeters in diameter, weighing in at only 2,600 Kilograms – smaller and lighter than any previous ground-based orbital launch vehicle.


Image: JAXA/ISAS


Photo: JAXA Webcast

Saturday's successful orbital delivery of TRICOM-1R cemented the vehicle's place in space history as the smallest orbital LV to successfully fly, a record previously held for 48 years by Japan's Lambda-4S that stood 16.5 meters tall and weighed 9.4 metric tons, achieving Japan's first successful orbital launch in 1970. The only orbital LV smaller than SS-520 was the U.S. Navy's air-launched Pilot vehicle that made six attempts at reaching orbit in the early days of space flight, but never achieved success.

As a souped-up Sounding Rocket, SS-520-5 was looking at a rapid launch sequence, planning to reach orbit in under four and a half minutes with only 82 seconds of actual powered flight – creating one of the fastest orbital space launches ever attempted.

Firing up its first stage, SS-520-5 shot up from its launch rail at 2:03:00 p.m. local time on Saturday with its aft fins sending the climbing rocket into a spin to provide stabilization as it climbed with a thrust outweighing the vehicle's mass by a factor of seven. The first stage, standing 6.1 meters tall and holding 1,587 Kilograms of propellant, pushed the vehicle skyward with a peak thrust of 185 Kilonewtons (18,900 Kilogram-force), averaging at 143kN (14,600kgf) over the course of a 31.7-second burn.
ЦитироватьSS-520ロケット 5号機の打ち上げ、無人カメラからの映像です。  #nvslive #SS520 pic.twitter.com/ndZC1d0714
— ネコビデオ ビジュアル ソリューションズ (@nvslive) February 3, 2018

Launch Profile – Image: JAXA/ISAS

Reaching a top speed of 2.0 Kilometers per second at first stage burnout, SS-520-5 entered a lengthy coast phase to continue climbing toward an apogee near 190 Kilometers. One minute and seven seconds after launch, the vehicle had passed 80 Kilometers in altitude and separated the protective nose cone to reveal the small CubeSat payload and shed no-longer needed weight. The first stage dropped away one second later, falling into the waters of the Pacific not far from the launch site given the rocket's very steep launch profile.

After the first stage departed the vehicle, Stage 2 entered a critical re-orientation maneuver to pitch down so that its and the third stage's burn could focus on building speed. The 29-second re-orientation maneuver employed four pulsed thrusters fed from a 5.7-liter, 230-bar Nitrogen pressure tank and forced the SS-520-5 into a precession around its spin axis to accomplish the pitch-down so that thrust from the upper stage would be directed nearly horizontally.


Planned Mission Ground Track – Image: JAXA/METI

Stage 2 jettisoned the interstage compartment with the ram line control thrusters to rid itself of additional mass before pushing on toward orbit. Two minutes and 37 seconds into the flight, the second stage was to verify its spin rate, position and velocity to calculate the optimized ignition time of its solid motor to give the vehicle the best chance at reaching orbit. This was followed seven seconds later by the permission signal for Stage 2 ignition being issued from the ground after engineers verified reaching orbit was possible based on the performance observed so far.

Successful ignition of the second stage was confirmed through real time telemetry, surpassing the point of failure on the previous SS-520 orbital launch attempt. Standing 1.7 meters tall & packed with 325 Kilograms of propellant, the second stage fired for 24.4 seconds to accelerate the rocket to a speed of 3.6 Kilometers per second, having plateaued out at nearly 190 Kilometers in altitude.


Photo: JAXA (TRICOM-1)

A brief coast phase of 30.5 seconds followed after burnout of the second stage to allow thrust to safely tail off before the spent stage was separated to clear the way for Stage 3 ignition three seconds later.

The purpose-built third stage is 0.8 meters long and holds 78 Kilograms of propellant using a composite case with the spacecraft adapter sitting atop. Its task, over the course of a burn of 25.6 seconds, was to boost the vehicle's speed by another 4.5km/s to an injection velocity of 8.1 Kilometers per second.

Due to the mass restrictions for the ultra-small launcher, Stage 3 could not be equipped with a telemetry system and was expected to only send GPS data via an Iridium satellite terminal as the only insight into how it was performing.

Orbital Insertion occurred around four and a half minutes after launch, aiming for an orbit of 180 by 1,500 Kilometers at an inclination of 31 degrees – though accuracy was not the prime concern for this proof-of-concept mission. Data from the Joint Space Operations Center showed two objects in orbits of 187 x 2,012 and 189 x 2,003 Kilometers, inclined 30.90° – indicating a slightly higher-than-predicted performance by the launcher.

A three minute coast phase was planned after the propulsive phase of the mission to ensure residual thrust on the third stage tailed off safely before releasing the TRICOM-1R satellite at an altitude of over 200 Kilometers, some 1,750 Kilometers downrange from the Uchinoura Space Center.


Image: JAXA

The TRICOM-1R CubeSat – a re-build of the satellite lost on SS-520-4 – complies with the 3U form factor, but unlike the vast majority of CubeSats, was not designed to be ejected from a deployment tube and instead features a base-mounted separation system interfacing with the upper stage of the launch vehicle via a central separation bolt.

TRICOM-1R was developed by the University of Tokyo and measures 11.6 by 11.6 by 34.6 centimeters in size with a mass of 3 Kilograms. The satellite uses body-mounted solar cells for power generation and operates in spin-stabilized mode. Five Earth-imaging cameras are installed on the CubeSat and a Store and Forward communications terminal will pick up data packets from a ground station and downlink them upon command from another ground station on a different part of the planet.

TRICOM-1 is expected to be operational for one to three months before succumbing to orbital drag and re-enter the atmosphere.
[свернуть]

triage

Цитироватьpnetmon пишет:
https://mobile.twitter.com/JAXA_jp/status/959728413467598850
Гугло перевод

We shot a state of demonstration experiment of ultra small satellite launch by SS-520 Unit 5 from Uchinoura Space Observatory at 14:03 today from another angle. The nickname of the super small satellite "TRICOM-1R" which succeeded in putting in orbit into "Tsuki" was decided
А в английской вики пишут Tasuki
Английская версия у JAXA не обновляется

che wi

Цитироватьpnetmon пишет:

А в английской вики пишут Tasuki
Да, たすき читается как Tasuki. Так называется лента, которую участники соревнований в беге по шоссе надевают через плечо и передают по завершении своего этапа, – аналог эстафетной палочки.

tnt22

Пресс-релиз JAXA (пока только на японском)

http://www.jaxa.jp/press/2018/02/20180203_ss-520-5_j.html
Цитировать
SS-520 5号機による超小型衛星打上げの実証実験の結果について
平成30年2月3日

国立研究開発法人宇宙航空研究開発機構
国立研究開発法人宇宙航空研究開発機構(JAXA)は、平成30(2018)年2月3日(土)14時03分00秒(日本標準時)に、SS-520 5号機による超小型衛星打上げの実証実験を内之浦宇宙空間観測所において実施しました。

SS-520 5号機は計画通り飛行し、実験実施後約7分30秒に超小型衛星TRICOM-1R(トリコム・ワンアール)を分離、軌道投入に成功しました。TRICOM-1Rの状態は正常です。

本件は経済産業省 平成27年度宇宙産業技術情報基盤整備研究開発事業(民生品を活用した宇宙機器の軌道上実証)の採択をうけて実施しました。
今回のSS-520 5号機実験実施にご協力頂きました関係各方面に深甚の謝意を表します。
なお、実験実施時の天候は晴れ、北西の風3.0m/秒、気温7.0℃でした。
Цитировать
О результатах запуска сверхмалого спутника на ракете SS-520 5
3 февраля 2018 г.

Национальное агентство аэрокосмических исследований (JAXA)
Национальное агентство аэрокосмических исследований Японии (JAXA) объявило о запуске сверхмалого спутника на ракете SS-520 5 в 14:03:00 (суббота) 3 февраля 2018 года (японское стандартное время). Запуск был произведен в Космическом центре Учиноура.

Старт ракеты SS-520 5 прошел штатно, микроспутник TRICOM-1R был выведен на орбите примерно через 7 минут 30 секунд после старта. Статус TRICOM-1R нормальный.

Запуск был реализован в соответствии с принятым Министерством экономики, торговли и промышленности в 1997 году Проекта исследований и развития информационной инфраструктуры в области космической промышленности (демонстрация космического оборудования).

Мы хотели бы выразить нашу глубокую благодарность всем заинтересованным сторонам, которые в этот раз сотрудничали в проведении запуска ракеты SS-520 5.

Погода во время эксперимента была хорошей, ветер на северо-западе составлял 3,0 м / с, а температура воздуха составляла 7,0 ° С.

triage

Немного не уверен что имеется одно определение и только для групповых беговых соревнований
Цитировать https://mobile.twitter.com/JAXA_jp/status/959728413467598850
本日14時03分に内之浦宇宙観測所から行われた、SS-520 5号機による超小型衛星打ち上げの実証実験の様子を別アングルから撮影しました。 軌道投入に成功した超小型衛星「TRICOM-1R」の愛称は「たすき」に決定しました。
たすき

 https://ja.wikipedia.org/wiki/%E3%81%9F%E3%81%99%E3%81%8D  

avmich

Крупное техническое достижение. Проблема минимизации компонентов ракетных систем не такая сложная, как считалось многими, теперь можно говорить об экономической оптимизации.

Василий Ратников

Цитироватьavmich пишет:
Крупное техническое достижение.
наверное я чего то не догоняю с ней.
бестолковая фигня
вот Электрон да это крупное техническое достижение
можно кубосаты выводить стаями или миниспутники

а вот это нечто ? дорогое и рахитичное ?
вот так с моей точки зрения это просто выверт японской бюрократии и освоение бюджетов
ни один частник за такое даже думать не будет о заказе этого нечто.

другое дело если вдруг они в 10 раз цену понизят, тогда ладно.

Solar Sailor

#48
Цитироватьavmich пишет:
Крупное техническое достижение. Проблема минимизации компонентов ракетных систем не такая сложная, как считалось многими, теперь можно говорить об экономической оптимизации.
Не знаю кем считалось, но еще в 1960 та же NOTS-EV2, хоть испытания и были неудачными, имела достаточную дельту для выхода на орбиту, при этом имев массу чуть больше тонны и ПН 7кг. (там воздушный старт впрочем был). Вопрос как раз в экономике.

DiZed

$3.5M - это себестоимость изготовления или бюджет на разработку? вообще-то это примерно годовой бюджет, выделяемый на исследования профессору в университете (на группу из 3-4 постдоков, 5-6 студентов-аспирантов)
ради читаемости и содержательности форума в настройках аккаунта отключено отображение всего, что можно отключить; я не вижу ваши (и свои) юзерпики, подписи, посты персонажей из блеклиста  ("старый", "бендер","аникей", "nonconvex" "alexandru" "streamflow" etc ) и т.п. бесполезности


pkl

ЦитироватьВасилий Ратников пишет:
был бы японским чиновником закрыл бы этот позор нафиг.
Какое счастье, что Вы - не японский чиновник! И не чиновник вообще. :)
Цитировать4 кг ? 3.5 миллиона долларов ?
4 кг ракета должна стоить ну тыщ 300 баксов максимум.
Так в чём проблема? 300000 х 57 = 17,1 млн. р. Давай, вперёд: делай ООО, собирай команду, бери лицензию, дальше в банк за кредитом... ;)
Вообще, исследовать солнечную систему автоматами - это примерно то же самое, что посылать робота вместо себя в фитнес, качаться.Зомби. Просто Зомби (с)
Многоразовость - это бяка (с) Дмитрий Инфан

pkl

ЦитироватьSolar Sailor пишет:
Цитироватьavmich пишет:
Крупное техническое достижение. Проблема минимизации компонентов ракетных систем не такая сложная, как считалось многими, теперь можно говорить об экономической оптимизации.
Не знаю кем считалось, но еще в 1960 та же NOTS-EV2, хоть испытания и были неудачными, имела достаточную дельту для выхода на орбиту, при этом имев массу чуть больше тонны и ПН 7кг. (там воздушный старт впрочем был). Вопрос как раз в экономике.
А стоимость какая? Сабж можно хоть с автотрейлера запустить. Или с корабля в открытом море.
Вообще, исследовать солнечную систему автоматами - это примерно то же самое, что посылать робота вместо себя в фитнес, качаться.Зомби. Просто Зомби (с)
Многоразовость - это бяка (с) Дмитрий Инфан

Bizonich

Так какого лешего в вики и еще ряде источников пишут ПН 140 кг? Сколько реально?
Любознательный дилетант.

Василий Ратников

Цитироватьpkl пишет:
Давай, вперёд: делай ООО, собирай команду, бери лицензию, дальше в банк за кредитом.
собрали, сделали
Rocket Lab называется, за похожие деньги 150 кг на солнечно-синхронную и за 200 на НОО
а это какой то японский попил бабла

instml

ЦитироватьBizonich пишет:
Так какого лешего в вики и еще ряде источников пишут ПН 140 кг? Сколько реально?
140 по баллистической траектории без верхней ступени.
14 кг макс ПН на орбиту.
Go MSL!

tnt22

Подготовка ПУ и пуск
ЦитироватьSS-520-5号機、打ち上げ準備タイムラプス

NVS

Published on 6 Feb 2018

ランチャー立ち上げ 
角度調整
打ち上げ40秒前 
世界最小級のサイズで人工衛星[TRICOM-1R」を投入した
SS-520ロケット5号機の打上げ前の準備から打ち上げまでのタイムラプス映像です。
(12:40)

tnt22

Цитировать isana‏ @lizard_isana 16 мар.

こちらは2月にSS-520で打ち上げられたTRICOM-1の高度変化。遠地点2000km、近地点200kmという極端な楕円軌道です。近地点は変わらず遠地点が下がっているのが分かります。近地点での加減速は遠地点高度に影響を及ぼします。同じことが落下間近で大気の影響がより強く出ている天宮一号にも起きています。

tnt22

ЦитироватьJoseph Remis‏ @jremis 2 ч. назад

Obj. 43201 TRICOM-1R (TASUKI) decay prediction: August 22, 2018 UTC 04h45mn ± 34h


tnt22

Цитировать タキオラ・タキオラル(ニシカズ) ‏ @NishiKazu_NKC 9 ч. назад

SS-520 5号機で打ち上げられたTRICOM-1R"たすき"の再突入予想が出ているみたい。日本時間の2018年8月22日の早朝3時40分の前後26時間に再突入するとの予想。落下予想場所は南太平洋。
#TRICOM1R #SS520 #SS520_5
ЦитироватьПохоже, что срок существования КА TRICOM-1R «Tasuki», запущенного ракетой SS-520-5, подошёл к концу. Ожидается, что спутник около 3:40 ранним утром 22 августа 2018 года по японскому стандартному времени войдёт в атмосферу Земли. Ожидаемое место падения - южная часть Тихого океана.
Цитироватьネコビデオ ビジュアル ソリューションズ‏ @nvslive 9 ч. назад

OrbTrack(旧GoogleSatTrack)による、TRICOM-1Rの軌道はこちら。 近地点は 165km 遠地点は430km になってるみたいです。 打上げ時は183km×2010kmの軌道でした。 当初軌道寿命の目標は30日以上でしたので、かなり長生きですね。 
https://www.lizard-tail.com/isana/tracking/?catalog_number=43201 ...
#nvslive
ЦитироватьВот орбита TRICOM-1R от OrbTrack (ранее GoogleSatTrack). Перигей составляет 165 км, а апогей - 430 км. При запуске траектория была 183 км × 2010 км . Первоначальный срок орбитального существования составлял немногим более 30 дней, поэтому реальный срок существования довольно долог.
https://www.lizard-tail.com/isana/tracking/?catalog_number=43201 ...