Hayabusa 2 (Хаябуса-2), Procyon – H-IIA F26 – Танэгасима – 03.12.2014 04:22:04 UTC

Автор Космос-3794, 13.08.2010 10:49:07

« назад - далее »

0 Пользователи и 3 гостей просматривают эту тему.

tnt22

Цитироватьsol пишет:
Посадка на астероид не планируется (в отличие от первого Сокола). Жаль.
Второй Сокол не будет садиться сам, он десант высадит - см #372, - ему сейчас место подбирают, чтоб булыжников здоровых поменьше было...

tnt22

Hayabusa2: 10 посадочных мест для MASCOT на астероиде Рюгю
ЦитироватьHayabusa2 : 10 sites d'atterrissage de MASCOT sur l'astéroïde Ryugu
Доступ по ссылке

CNES

Дата загрузки: 22 авг. 2018 г.

En août 2018, le CNES proposait 10 sites de choix pour faire atterrir le robot MASCOT sur l'astéroïde Ryugu (les 10 taches colorées sur cette modélisation 3D). Un seul sera finalement retenu. Crédits : JAXA, University Tokyo, Koichi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST, CNES, DLR.
https://www.youtube.com/watch?v=sb68q6Fvniwhttps://www.youtube.com/watch?v=sb68q6Fvniw (0:12)

tnt22

Hayabusa2: выбранная посадочная площадка для MASCOT на астероиде Рюгю
ЦитироватьHayabusa2 : site final d'atterrissage de MASCOT sur l'astéroïde Ryugu
Доступ по ссылке

CNES

Дата загрузки: 22 авг. 2018 г.

Le site N°9 a finalement été choisi le 23/08/18 par l'agence spatiale japonaise (JAXA) pour poser l'atterrisseur franco-allemand MASCOT sur l'astéroïde Ryugu en octobre 2018 (zones de probabilité du 1er contact en bleu clair, zones de stabilisation après rebonds en bleu plus foncé). Crédits : JAXA, University Tokyo, Koichi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST, CNES, DLR.
https://www.youtube.com/watch?v=rVwyH1ahN4shttps://www.youtube.com/watch?v=rVwyH1ahN4s (0:12)

Pirat5

Цитироватьtnt22 пишет:
Цитироватьsol пишет:
Посадка на астероид не планируется (в отличие от первого Сокола). Жаль.
Второй Сокол не будет садиться сам, он десант высадит - см #372 , - ему сейчас место подбирают, чтоб булыжников здоровых поменьше было...
Посадка на астероид планируется!
ЦитироватьПосле прибытия к цели в июне-июле 2018 г. «Хаябуса-2» произведет с высоты около 20 км обследование поверхности Рюгу с использованием различных инструментов дистанционного зондирования. После выбора подходящего района зонд снизится до высоты 100 метров, откуда будет спущен небольшой европейский посадочный зонд MASCOT (Mobile Asteroid Surface Scout) и три японских прыгающих аппарата-ровера Minerva 2.
Заборы грунта с «первородной» поверхности и из искусственно созданного с помощью ударника кратера должны состояться в первой половине 2019 г. А в ноябре или декабре «Хаябуса-2» покинет астероид и отправится в обратный путь; прибытие к Земле ожидается через год - в декабре 2020 г.
(НК №03-2016, стр.58, "На пути к драконьему логову", И.Соболев)
Это усиление и расширение миссии «Хаябуса-1»



tnt22

#386









tnt22



кукушка

Ученые выбрали места посадок на астероид Рюгу в рамках миссии «Хаябуса-2»

Японское агентство аэрокосмических исследований (JAXA) объявило об окончательном выборе посадочных мест на астероид в рамках миссии «Хаябуса-2». Напомним, что на борту основного аппарата находятся четыре спускаемых модуля: три аппарата MINERVA-II, а также посадочный модуль MASCOT, разработанный Германским авиационно-космическим центром (DLR). Основная задача запущенного в декабре 2014 года исследовательского зонда «Хаябуса-2» заключается в сборе и доставке на Землю образцов грунта с 900-метрового астероида Рюгу.

По мнению исследователей, в грунте Рюгу может содержаться вода и органические молекулы – строительные блоки, породившие жизнь на нашей планете. Японский космический аппарат достиг цели своего исследования в конце июня, после чего начал длительную процедуру торможения и сближения с астероидом. В настоящий момент «Хаябуса-2» находится на орбите всего в нескольких километрах от поверхности космического тела.
Спойлер
Сбор образцов грунта астероида будет производиться не с помощью посадочного модуля и роверов, а с помощью самого зонда «Хаябуса-2», непосредственно с орбиты Рюгу. Аппарат оснащен взрывным зарядом, которым он выстрелит в поверхность объекта. Взрыв поднимет в космос частицы грунта астероида. Если все пройдет удачно, астрономы ожидают, что зонд вернет образцы на Землю к концу 2020 года, сбросив их внутри специальной капсулы.

Для выбора наиболее подходящего места посадки посадочного модуля MASCOT агентство JAXA собрало целую конференцию. Астрономы выбрали десять мест-кандидатов, на которые мог бы высадиться MASCOT. В качестве основного варианта была выбрана область MA-9, расположенная в южном полушарии Рюго.

«Выбор места для посадки оказался очень тяжелой задачей. С другой стороны, теперь мы можем сказать, что мы нашли идеальное место. Эта точка, MA-9, была главным кандидатом на победу в конкурсе с самого его начала», — заявил Ральф Яуманн из Германского авиационно-космического центра (DLR), руководитель проекта MASCOT.



Здесь имеются «почти земные» условия – температура днем и ночью варьируется от 47 до -63 градусов Цельсия, что позволит значительно продлить жизнь батареям модуля. Кроме того, ученые не обнаружили здесь никаких областей, где постоянно царит тень или свет. Горький опыт с посадочным модулем «Филы» при посадке на поверхность кометы Чурюмова-Герасименко заставил астрономов более основательно подойти к выбору нужного места.

С научной точки зрения, зона MA-9 интересна для планетологов тем, что здесь находится большое количество крупных и мелких камней, удобных для химического анализа, а также несколько областей, обнаженных относительно недавно и еще не подвергавшихся действию космических лучей и солнечного ветра.

MASCOT оснащен спектрометром, магнитометром, радиометром, а также камерой для сбора научных данных. Кроме того, аппарат имеет двигатель со смещенным центром тяжести, вращение которого позволит зонду прыгать по поверхности астероида.

Помимо места посадки модуля MASCOT агентство JAXA определилось с местом посадки роверов MINERVA-II, а также местом, где будет производиться забор грунта с помощью зонда «Хаябуса-2». Зонд должен будет сблизиться с поверхностью Рюгу в локации L07, располагающейся в области экватора. В качестве резервных областей ученые выбрали точки L08 и M04, расположенные недалеко от основной. Для высадки роверов MINERVA-II ученые выбрали зону N6, что в северной части астероида.

Согласно информации JAXA, «Хаябуса-2» сблизится с астероидом для сбора образцов грунта 12 сентября. Повторное сближение запланировано на середину октября. Роверы планируется высадить 20-21 сентября. Высадка посадочного модуля MASCOT запланирована на 3 октября 2018 года. Даты высадок еще могут измениться, отмечают в агентстве.
https://hi-news.ru/research-development/uchenye-vybrali-mesta-posadok-na-asteroid-ryugu-v-ramkax-missii-xayabusa-2.html
[свернуть]

tnt22

https://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10081/151_read-29511/#/gallery/31818
ЦитироватьNext stop for MASCOT: A southern location, pleasant temperatures and a beautiful view
Landing site on the asteroid Ryugu determined
23 August 2018

Landing of the Hayabusa2 mission on the asteroid Ryugu

The MASCOT lander is set to land on the blue-marked landing ellipse MA-9 on Ryugu. The Japanese Hayabusa2 probe will approach the asteroid surface at location L07 (L08 and M04 are substitute landing sites), where it will take samples. The MINERVA rovers will be dropped off at the red marked landing N6.
Credit: ©JAXA, University of Tokyo & collaborators.

Landing at the equator

The Hayabusa2 probe will descend to the asteroid Ryugu for sampling in the L08 area near the equator. L07 and M04 are the replacement sites.
Credit: ©JAXA, University of Tokyo & collaborators.

Landing in the southern hemisphere

The location on the asteroid, at about 315 degrees east and 30 degrees south, where MASCOT will land and conduct measurements with four instruments, is currently still simply called 'MA-9'.
Credit: ©JAXA, University of Tokyo & collaborators.
    [/li]
  • Selection of the final landing site fr om 10 candidate sites completed
  • Temperature fluctuations between 47 and minus 63 degrees Celsius at the landing site
  • More fresh material and boulders up to 30 metres tall await MASCOT
  • Landing scheduled for 3 October 2018.
  • Focus: Space, exploration, mission
Not too hot and not too cold. Not too many boulders, nor too few. Easily accessible and scientifically exciting. Meeting the requirements that the Mobile Asteroid Surface Scout (MASCOT) team had for the landing site on the asteroid Ryugu was no easy task. "However, we have now decided on an almost perfect landing site," says Ralf Jaumann from the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) Institute of Planetary Research, who is Principal Investigator of the MASCOT landing probe and responsible for the lander's MasCam camera experiment. DLR Project Manager Tra-Mi Ho is also satisfied with the selection of the landing site: "For the operation of our lander, the chosen landing site was among the favourites from the very start." In consultation with more than 100 international and national partners, the MASCOT landing site was sel ected from 10 potential candidates, and announced on 23 August 2018. MASCOT's landing is scheduled for 3 October 2018. The locations at which the Hayabusa2 probe is expected to take soil samples have also been designated, as have the sites wh ere the three MINVERVA-II rovers will be placed on the asteroid's surface.

Located at approximately 315 degrees east and 30 degrees south, the place at which MASCOT is supposed to land on the primordial celestial body and carry out measurements on the asteroid's surface using four instruments is, at the moment, still simply called 'MA-9'. The landing site area has several advantages. Firstly, it is far enough from the regions in which Hayabusa2 will descend to the surface and take soil samples – in this way, MASCOT and Hayabusa2 will not get in each other's way as they perform their activities. Secondly, the landing site lies in Ryugu's southern hemisphere, so with the data collected by Hayabusa2 at the equator and MINERVA in the northern hemisphere, scientists will be able to gain good coverage of and investigate the 950-metre-diameter asteroid.
Спойлер
Numerous boulders and fresh material

Temperatures are expected to reach up to 47 degrees Celsius during the asteroid day and drop to minus 63 degrees Celsius at night. This is in line with the desired framework conditions for the operation of the instruments and for the lander's battery. In the vicinity of the landing site, there are numerous boulders up to 30 metres tall, but the really big rocks are not located in the MA-9 region. Images acquired by the optical navigation camera on the Hayabusa2 probe indicate that the landing site area probably holds fresher material that had little exposure to cosmic radiation, the particle flow of solar winds, as well as interplanetary dust – and is therefore still very primordial and in an unchanged state.

Spoilt for choice

Making a final selection from 10 potential landing sites was not easy for the scientists and engineers. After all, every team of instrument experts should be able to get the working conditions and data that it expects. For example, the MicrOmega infrared hyperspectral microscope of the Institut d'Astrophysique Spatiale (IAS) would have preferred slightly cooler temperatures during the asteroid day. The MAG magnetometer of the Technical University Braunschweig would have favoured very large boulders for its measurements. By contrast, the MasCam camera and the MARA radiometer – both instruments developed by the DLR Institute of Planetary Research – enjoy almost ideal conditions for their scientific work because they have a view of boulders on the horizon and can examine fresh asteroid material. Ultimately, the conditions that the landing site offers are very favourable for the lander and all instruments on board. "From our perspective, the sel ected landing site means that we engineers can guide MASCOT to the asteroid's surface in the safest way possible, while the scientists can use their various instruments in the best possible way," says Tra-Mi Ho, Project Manager at the DLR Institute of Space Systems. "But we are also aware: there seem to be large boulders across most of Ryugu's surface, and barely surfaces with flat regolith. Although scientifically very interesting, this is also a challenge for a small lander and for sampling."

About the Hayabusa2 mission and MASCOT

Hayabusa2 is a Japanese space agency (Japan Aerospace Exploration Agency; JAXA) mission to the near-Earth asteroid Ryugu. The German-French lander MASCOT on board Hayabusa2 was developed by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) and built in close cooperation with the French space agency CNES (Centre National d'Etudes Spatiales). DLR, the Institut d'Astrophysique Spatiale and the Technical University of Braunschweig have contributed the scientific experiments on board MASCOT. The MASCOT lander and its experiments are operated and controlled by DLR with support fr om CNES and in constant interaction with the Hayabusa2 team.

The DLR Institute of Space Systems in Bremen was responsible for developing and testing the lander together with CNES. The DLR Institute of Composite Structures and Adaptive Systems in Braunschweig was responsible for the stable structure of the lander. The DLR Robotics and Mechatronics Center in Oberpfaffenhofen developed the swing arm that allows MASCOT to hop on the asteroid. Das DLR Institute of Planetary Research in Berlin contributed the MasCam camera and the MARA radiometer. The asteroid lander is monitored and operated fr om the MASCOT Control Center in the Microgravity User Support Center (MUSC) at the DLR site in Cologne.
[свернуть]

tnt22

ЦитироватьHAYABUSA2@JAXA‏ @haya2e_jaxa 8 ч. назад

Yesterday, we held a press conference on the touchdown and landing sites this September/October for @MASCOT2018, MINERVA-II rovers and the first sample collection for Hayabusa2! Check out our press release material for how we selected the best spots.

http://www.hayabusa2.jaxa.jp/en/enjoy/material/ ...

tnt22

Материалы пресс-брифинга 2018-08-23 на англ. яз.

Hayabusa2_Press20180823_ver6_e.pdf - 3.0 MB, 40 стр, 2018-08-24 05:19:34 UTC

tnt22


tnt22

http://www.hayabusa2.jaxa.jp/en/topics/20180828eb/index.html
ЦитироватьThe people behind the OPNAV

Notice: This is an English translation of the Japanese article on August 6, 2018..

After a 300 million km journey from the Earth, Hayabusa2 arrived safely at asteroid Ryugu; a celestial target only 900m in size. A 900m target at a distance of 300 million km is the equivalent to a 6cm target at a distance of 20 thousand km. This means that arriving at Ryugu was like aiming at a 6cm target in Brazil from Japan. Extremely accurate navigation is therefore necessary, and this task fell on the shoulders of the Hayabusa2 Project's OPNAV team.

OPNAV stands for "Optical Navigation" or "光学航法" (kougaku-kouhou) in Japanese. Actually, a more accurate term would be "Hybrid Navigation using Optical and Radiometric Observations", but usually this long phrase is simply referred to as "Optical Navigation". Optical Navigation is a technique to accurately estimate the trajectory of both the spacecraft and the target celestial body by imaging the celestial target with an onboard camera, and communicating with the spacecraft via radio waves. Back in May, we also used the star tracker onboard Hayabusa2 instead of the onboard camera. This was described here, in our article entitled "How the Star Tracker image of Ryugu was used for optical navigation"

After the ion engine operation for the forward cruise was completed on June 3, 2018, optical navigation using the Optical Navigation Camera - Telescopic (ONC-T) began for the approach to Ryugu. The routine for optical navigation operation is summarized in Figure 1.
Спойлер

Figure 1: The work loop for optical navigation.
Image credit: JAXA

In Figure 1, the first four teams listed on the far left accurately measure the position of Ryugu with respect to the background stars from the image captured by the ONC-T. Apart from JAXA, the ground observation team included members who were experts in asteroid observation. The researchers who were involved in this part of the optical navigation were Professor Masateru Ishiguro (Seoul National University), Drs Shin-ichiro Okumura and Seitaro Urakawa (Japan Spaceguard Association) and Dr Daisuke Kuroda (Kyoto University). These four researchers measured the position of Ryugu independently from the images and sent this data to the "navigation team".

The navigation team estimates the trajectory of the spacecraft and Ryugu based on the location data for Ryugu sent by the previous team, and the radio navigation data (range and range rate). The estimated trajectory is then passed to the "guidance team". The guidance team then designs the future trajectory of the spacecraft. The navigation team and guidance team are the "people behind the OPNAV" and we will introduce the members later.

The spacecraft trajectory created by the guidance team is sent to the "operation team" who generate the command to send to the spacecraft. The primary people in charge of the operation team at that time were Drs Takashi Ono、Tomohiro Yamaguchi and Naoko Ogawa from JAXA. The generated command is sent to the spacecraft and the trajectory is corrected. The onboard camera then takes a new image of Ryugu and the loop repeats.

On June 3, this work loop had been performed ten times. In other words, it took ten optical navigation cycles to guide Hayabusa2 safely to the arrival at Ryugu. Since ten loops were performed over about 25 days, this meant operations were conducted every 2 to 3 days. Figure 2 summarized the result of the optical navigation.


Figure 2: Progression of the estimation accuracy for the orbits of the spacecraft and asteroid made using optical navigation. The accuracy in the position of Ryugu (①) and the relative position of Ryugu from Hayabusa2 (②) are indicated. The numerical values written under the spacecraft indicate the distance and relative speed of the spacecraft to the asteroid at that time. There is a 1σ error in the listed value. 
Image credit:JAXA

As you can see from Figure 2, the error in the position for Ryugu was initially 140km (that is, Ryugu's location could be 140km more or less than the measured value) and the error in the relative position of Ryugu from Hayabusa2 was 500km. However, as the optical navigation was repeatedly performed, the error gradually decreased. Ultimately, the relative position error of Ryugu from Hayabusa2 was reduced to just 0.1km.

Let's now meet the people behind the OPNAV (Figure 3).


Figure 3: The people behind the OPNAV. This photograph was taken after the OPNAV operation TCM07 on June 23, 2018. From the left in the front row, we see Tsuda, Onishi, Oki and Kikuchi, starting from the left in the middle row is Kato, Taniguchi, Matsuoka, and from the left in the back two is Takeuchi, Miyahara, Oi, and Takao (Family name only is given with titles omitted).
Image credit:JAXA

The OPNAV team members are Dr Hiroshi Takeuchi (JAXA), Mr Masatoshi Matsuoka, Mr Takaaki Kato, Mr Toshihiko Oi (NEC), Mr Tadashi Taniguchi, Mr Takafumi Ohnishi, Mr Masaya Nakano, Mr Nobuhiro Miyahara, Ms Chiaki Aoshima, Mr Nobuaki Fujii, Ms Tomoko Yagami (Fujitsu). In addition, the OPNAV guidance team members are Project Manager Yuichi Tsuda, Dr Shota Kikuchi, Mr Yusuke Oki and Mr Yuki Takao (JAXA).

So, what is next for the people behind the OPNAV...?
[свернуть]
Hayabusa2 Project
2018.08.28